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Abstract
We study a non-equilibrium Langevin many-body system containing two ‘test’
particles and many ‘background’ particles. The test particles are spatially
confined by a harmonic potential, and the background particles are driven by an
external driving force. Using numerical simulations of the model, we formulate
an effective description of the two test particles in a non-equilibrium steady
state. In particular, we investigate several different definitions of the effective
force acting between the test particles. We find that the law of action and
reaction does not hold for the total mechanical force exerted by the background
particles, but that it does hold for the thermodynamic force defined operationally
on the basis of an idea used to extend the first law of thermodynamics to non-
equilibrium steady states.

1. Introduction

Colloids are microscopic particles suspended in liquid. Generally, they are of the order of
micrometres in size, and thus they are much larger than molecules but still small enough to
exhibit Brownian motion. Colloids are convenient to study experimentally because, unlike
molecules, they can be easily observed with ordinary microscopes. In recent years, as the
technology used in their manipulation has developed, experimental studies of colloids have
advanced greatly [1–6].

In colloidal many-body systems, melting, freezing, glass transitions and non-equilibrium
statistical mechanics have been studied. Among the studies of non-equilibrium steady states
(NESSs), that of Dzubeilla et al investigated a model that describes two fixed colloidal particles
(test particles) in an environment containing many driven particles (background particles).
They reported that in a NESS, the effective interaction forces they defined between the two
fixed particles violate the law of action and reaction [7]. This result implies that an effective
potential seems not to be constructed in NESS.
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Figure 1. Schematic representation of the model we study. Note that the background particles are
not driven in the equilibrium case.

The effective interaction force defined in [7] represents the two-body effect of the total
force exerted by the background particles, which is extracted by subtracting from it the total
force in the case when there are only colloidal particles. Although their definition seems
plausible because of its simplicity, we expect that there is room to define a different type
of effective force in NESS. With this motivation, we attempt to provide another idea for an
effective interaction force between the two fixed particles.

In this paper we reconsider effective forces in NESSs by studying a system similar to that
used in [7]. First, we review the concept of effective forces in equilibrium from three points
of view: statistical mechanics, mechanics and thermodynamics. Next, we investigate effective
forces for non-equilibrium systems by considering the results of numerical experiments. In
particular, we demonstrate that in the NESS we consider the law of action and reaction holds
for the effective force defined according to a conjectured thermodynamic relation applied to
NESSs.

2. Model

The model we study describes a system in which two ‘test’ particles are trapped side by side
in the centre of the system by a harmonic potential, and N’background’ particles are driven by
an external force (see figure 1). The test particles are unaffected by the driving force, and the
background particles are unaffected by the trapping potential. Hereafter, we refer to the test
particles as particle 1 and particle 2.

For the sake of simplicity, we consider the idealized situation of a two-dimensional system
of length Lx and L y in the x and the y directions, with periodic boundary conditions in both
directions. Then, letting �R1 and �R2 be the positions of particle 1 and particle 2, we consider
particle 2 fixed for simplicity, with particle 1 trapped by the harmonic potential

Vt( �R1) = k

2
( �R1 − �Rc)

2, (1)

where �Rc corresponds to the centre of the potential and k is a spring constant chosen to be
sufficiently large that particle 1 can be regarded as almost fixed. It is important to note that
although it may seem simpler to fix particle 1 the dynamical degrees of freedom of particle
1 must be taken into account when we consider the distribution function of the effective
description in which the degrees of freedom of the background particles are integrated. (If
particle 1 is also fixed, no variable remains in the distribution function of the effective
description (see the next section).) As a further simplification, it is assumed that there is no
direct interaction between particles 1 and 2 and that there is no direct interaction among the
background particles. Then, we stipulate that the interaction between particle 1 or particle 2
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and a background particle is represented by a short-ranged potential function Vint( �Ri − �rk),
where �rk is the position of the kth background particle (k = 1, . . . , N), of the form

Vint(�r) = V0 exp

[
−2

∣∣∣∣ �r
σ

∣∣∣∣
2]

. (2)

With the system as described above, the motion of particle 1 is described by the Langevin
equation

γ �̇R1 = −k( �R1 − �Rc) −
N∑

k=1

∂Vint( �R1 − �rk)

∂ �R1

+ �ξ(t), (3)

where γ is a friction constant and �ξ(t) = (ξx(t), ξy(t)) represents Gaussian white noise that
satisfies 〈

ξα(t)ξα′ (t ′)
〉 = 2γ T δ(t − t ′)δα,α′ . (4)

Here, the Boltzmann constant is set to unity, and T (=1/β) is the temperature of the
environment. The motion of the kth background particle is described by

γ �̇rk = �f −
2∑

i=1

∂Vint( �Ri − �rk)

∂�rk
+ �ξk(t), (5)

where �f = ( f, 0) is an external driving force and �ξk(t) = (ξk,x (t), ξk,y(t)) is Gaussian white
noise that satisfies〈

ξk,α (t)ξk′ ,α′(t ′)
〉 = 2γ T δk,k′ δ(t − t ′)δα,α′ . (6)

Below, all the quantities are converted into dimensionless forms by normalizing σ , γ and
T to unity. We set the parameters used for our numerical experiments as Lx = 11, L y = 6,
N = 200, k = 50, V0 = 7, 0 � f � 0.3, �Rc = (3, 3) and �R2 = (4.5, 3). Also, all the
numerical results in this paper are obtained using a finite difference method of the Langevin
equations with a time step 2.5 × 10−4.

3. Equilibrium case

3.1. Review of the effective description

Before analysing non-equilibrium cases, we review the effective description of particles 1 and
2 in equilibrium, in which the stationary distribution function of the model is the canonical
distribution

pc( �R1, {�rk}; �R2) = exp{−β[Vt( �R1) + ∑2
i=1

∑N
k=1 Vint( �Ri − �rk)]}

Z
, (7)

where Z is a normalization constant. In the equilibrium case, employing the well-established
framework of statistical mechanics, we can derive the effective Hamiltonian of particles 1 and
2 by integrating (7) over the degrees of freedom of the background particles.

For the canonical distribution pc( �R1, {�rk}; �R2) given by (7) and the interaction given
by (2), there exists a function �R1 − �R2, which we write Veff( �R1 − �R2), satisfying the equation

exp{−β[Veff( �R1 − �R2) + Vt( �R1)]} =
∫ N∏

k=1

d�rk pc( �R1, {�rk}; �R2). (8)

It is natural to refer to the function Veff( �R1 − �R2) as the effective interaction potential. The fact
that this effective interaction potential depends only on the relative displacement �R1 − �R2 is
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due to the spatial symmetry of the system. Then, as the left-hand side of (8) depends only on
�R1 and �R2, it is interpreted as the steady-state distribution for the effective description:

Peff( �R1; �R2) = exp{−β[Vt( �R1) + Veff( �R1 − �R2)]}. (9)

Clearly the effective potential Veff( �R1 − �R2) obtained in the above manner is properly defined,
as this Peff( �R1; �R2) is in canonical form.

With the above argument establishing the proper definition of Veff( �R1 − �R2), the statistical
mechanical force between particles 1 and 2 is defined naturally by

�F stat
i ≡ −∂Veff( �R1 − �R2)

∂ �Ri

, (10)

with i = 1, 2. Because Veff( �R1 − �R2) is a function of the relative displacement �R1 − �R2, we
immediately find the relation

�F stat
1 = − �F stat

2 , (11)

which represents the law of action and reaction for statistical mechanical forces in equilibrium.
The statistical mechanical force defined above is closely related to the mechanical force exerted
by all the background particles:

�Fmec
i ≡

N∑
k=1

∂Vint( �Ri − �rk)

∂�rk
. (12)

Indeed, using (8) and (10), we can prove the relation〈 �F stat
i

〉s

f =0
=

〈 �Fmec
i

〉s

f =0
, (13)

where 〈 〉s
f =0 represents the statistical average in the steady state with f = 0 (see section 3.1

for the proof of (13)). From (11) and (13), we obtain the law of action and reaction for �Fmec
i :〈 �Fmec

1

〉s

f =0
= −

〈 �Fmec
2

〉s

f =0
. (14)

The statistical mechanical force in equilibrium can also be understood within a
thermodynamic framework by considering the case in which an operation is performed on the
system. We now explain this understanding. As an example, we consider the simple operation
of shifting the position of particle 2 as �R2 → �R2 + � �R2 instantaneously at time t = 0 (see
figure 2(a) depicting the case f = 0). After the application of this operation, the system is left
until a new equilibrium state is realized. Then, the work done by the external agent carrying
out this operation, W op1, satisfies the first law of thermodynamics:

W op1 = 〈Q1〉op1
f =0 + 〈Qb〉op1

f =0 +
〈
�Vt( �R1)

〉op1

f =0
+

〈
2∑

i=1

N∑
k=1

�Vint( �Ri − �rk)

〉op1

f =0

. (15)

Here 〈 〉op1
f represents the statistical average with respect to this operation. The quantities Q1

and Qb are the energies transferred to the heat bath from the degrees of freedom of particle 1
and the background particles. We refer to each of these transferred quantities of energy as heat.
According to [8], the quantities

J1 ≡ (γ �̇R1 − �ξ) ◦ �̇R1, (16)

Jb ≡
N∑

k=1

(γ �̇rk − �ξk) ◦ �̇rk (17)
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(a) (b)

Figure 2. (a) A simple operation shifting the position of particle 2 as �R2 → �R2 + � �R2

instantaneously at time t = 0. Note that the background particles are not driven in the equilibrium
case. (b) A simple operation in which the roles of particles 1 and 2 in (a) are exchanged.

represent the heat transferred per unit time, and therefore Q1 and Qb can be defined as

Q1 ≡
∫ ∞

0
dt J1(t), (18)

Qb ≡
∫ ∞

0
dt Jb(t). (19)

The symbol ◦ in (16) and (17) indicates that the product here is the stochastic Stieltjes integral
in the Stratonovich sense [8].

Now, using the work W op1, we define the thermodynamic force by

�F thermo
2 ≡ lim

|� �R2|→0

(
− W op1

�( �R2)x

,− W op1

�( �R2)y

)
. (20)

Then, integrating the Langevin equations (3) and (5), and using the expression

�̇R2 = � �R2δ(t) (21)

to represent the operation, we can prove the relation

�F thermo
2 =

〈 �Fmec
2

〉s

f =0
, (22)

(see section 3.2 for the proof of (22)).
In the same manner that we used to define the thermodynamic force �F thermo

2 , we can also
define �F thermo

1 by exchanging the roles of particles 1 and 2 (see figure 2(b) depicting the case
f = 0). That is, particle 1 is fixed, while particle 2 is trapped by the harmonic potential.
Because this exchange is equivalent to the spatial reflection with respect to �R2/2, we find

�F thermo
1 = − �F thermo

2 . (23)

Then, from (14), (22) and (23), we derive

�F thermo
1 =

〈 �Fmec
1

〉s

f =0
. (24)

From the above results, we conclude that in the equilibrium case, because 〈 �F stat
i 〉s

f =0 =
〈 �Fmec

i 〉s
f =0 = �F thermo

i , we can regard any one of these quantities as the effective interaction
force between particles 1 and 2.



2830 K Hayashi and S-I Sasa

3.2. Proofs of (13) and (22)

Proof of (13). The differentiation of (8) with respect to �R2 yields

∂Veff( �R1 − �R2)

∂ �R2

exp{−β[Veff( �R1 − �R2) + Vt( �R1)]}

=
∫ N∏

k=1

d �rk

N∑
k=1

∂Vint( �R2 − �rk)

∂ �R2

pc( �R1, �rk; �R2). (25)

Integrating this with respect to �R1, we derive〈
∂Veff( �R1 − �R2)

∂ �R2

〉s

f =0

=
〈

N∑
k=1

∂Vint( �R2 − �rk)

∂ �R2

〉s

f =0

(26)

= −
〈

N∑
k=1

∂Vint( �R2 − �rk)

∂�rk

〉s

f =0

. (27)

Using the definitions (10) and (12), we obtain (13).

Proof of (22). From (3) and (5) with f = 0, we obtain the energy balance equations:

(γ �̇R1 − �ξ) ◦ �̇R1 = −∂Vt( �R1)

∂ �R1

◦ �̇R1 −
N∑

k=1

∂Vint( �R1 − �rk)

∂ �R1

◦ �̇R1 (28)

(γ �̇rk − �ξk(t)) ◦ �̇rk = −
2∑

i=1

∂Vint( �Ri − �rk)

∂�rk
◦ �̇rk, (29)

where k = 1, . . . , N . The addition of (28) and (29) with k = 1, . . . , N leads to

J1 + Jb = −
2∑

i=1

N∑
k=1

V̇int( �Ri − �rk) − V̇t( �R1) +
N∑

k=1

∂Vint( �R2 − �rk)

∂ �R2

· � �R2δ(t), (30)

where we have used (21). Here, we perform the time integration and consider its statistical
average. Noting that the third term on the right-hand side of (30) becomes −〈 �Fmec

2 〉s
f =0 · ��R2,

we obtain

−
〈 �Fmec

2

〉s

f =0
· � �R2 = 〈Q1〉op1

f =0 + 〈Qb〉op1
f =0 +

〈
2∑

i=1

N∑
k=1

�Vint( �Ri − �rk)

〉op1

f =0

+
〈
�Vt( �R1)

〉op1

f =0
.

(31)

Comparing this with the definition of F thermo
2 given in (15), we obtain

�F thermo
2 =

〈 �Fmec
2

〉s

f =0
. (32)

4. Non-equilibrium case

In this section, which consists of three subsections, we study the non-equilibrium case. We
first note that the canonical distribution cannot be employed in the derivation of an effective
description for a NESS, in contrast to the equilibrium case. In the case of NESSs, the
relationships between �F stat

i , �Fmec
i and �F thermo

i are not yet understood. In this section, we
investigate these three forces as defined above in the non-equilibrium, f 	= 0 case. We hope
that this will allow us to obtain a proper effective description of particles 1 and 2 in a NESS. We
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Figure 3. 〈Fmec
1 〉s

f (open symbols) and −〈Fmec
2 〉s

f (solid symbols) are plotted as functions of f .

first present the numerically computed results determining �Fmec
i and �F thermo

i as defined in (12)
and (20) for a NESS. Then, we derive �F stat

i from the expression of the steady-state distribution
and compare this �F stat

i with �Fmec
i and �F thermo

i .
Throughout this section, we consider only the case of forces in the x direction and denote

the x component of �Fmec
i , �F thermo

i and �F stat
i as Fmec

i , F thermo
i and F stat

i .

4.1. Mechanical forces exerted by the background particles

In figure 3, 〈Fmec
1 〉s

f and −〈Fmec
2 〉s

f are plotted as functions of f . In the case f = 0, it is
seen that 〈Fmec

1 〉s
f =0 = −〈Fmec

2 〉s
f =0, which is consistent with (14). However, it is seen that

for f 	= 0, these quantities are not equal, and indeed the discrepancy between them increases
monotonically as a function of f . Hence, the law of action and reaction does not hold with
respect to 〈Fmec

1 〉s
f and 〈Fmec

2 〉s
f in the non-equilibrium case, unlike in the equilibrium case.

This asymmetry is interpreted as follows. Particle 2 is partially shielded from the effect of the
background particles by particle 1 in the case f > 0 (see figure 1).

4.2. Thermodynamic definition

Let us now reconsider the first law of thermodynamics represented by (15), which provides
the definition of �F thermo

i (i = 1, 2). In contrast to equilibrium cases, (15) cannot be employed
directly for NESSs because Jb, defined by (17), takes a non-zero value even when there is no
operation applied to the system, and hence Qb becomes infinite. (Recall that the background
particles are driven by the external driving force, f .)

In order to extend thermodynamic considerations to NESSs, we introduce the idea of the
net heat generated by an operation, following the framework of steady-state thermodynamics
proposed by Oono and Paniconi [9]. In this framework, the heat necessary to maintain a
steady state (the so-called housekeeping heat) is regarded as being independent of the change
undergone by the system caused by the operation, and the excess heat is defined by subtracting
the housekeeping heat from the total heat dissipated to the heat bath. They conjecture that
thermodynamics can be extended to NESSs by using this excess heat.

Here, as one example, in figure 4 〈Jb(t)〉op1
f is plotted as a function of time for the case

that � �R2 = (�R2, 0) = (0.25, 0) and f = 0.3. This graph shows that 〈Jb(t)〉op1
f reaches a

steady-state value, Jb(∞), a sufficiently long time after the application of the operation. Then,
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Figure 4. 〈Jb(t)〉op1
f (open symbols) and 〈Jb(t)〉op2

f (solid symbols) as functions of time t in the

non-equilibrium case with f = 0.3. Here, �R2 = 0.25 and �R1 = 0.25. 〈Jb(t)〉op1
f and 〈Jb(t)〉op2

f
are computed in the situations described in figures 2(a) and (b), respectively.

employing the idea of the excess heat, it is reasonable to define

Q̃b ≡
∫ ∞

0
dt (Jb(t) − Jb(∞)). (33)

By replacing Qb in (15) with Q̃b, we hypothesize the following, an extended form of the first
law of thermodynamics:

W op1 = 〈Q1〉op1
f +

〈
Q̃b

〉op1

f
+

〈
�Vt( �R1)

〉op1

f
+

〈
2∑

i=1

N∑
k=1

�Vint( �Ri − �rk)

〉op1

f

. (34)

Using this W op1, we define the thermodynamic force in the present NESS by (20).
In figures 5 and 6, we plot 〈�Vt〉op1

f and 〈∑2
i=1

∑N
k=1 �Vint( �Ri − �rk)〉op1

f as functions of
�R2 in the case f = 0.3. It is seen that these quantities depend linearly on �R2 in the range
plotted. This implies that �R2 = 0.25 is sufficiently small to be used in (20) to numerically
compute the force. Using this value, we obtain 〈Q̃b〉op1

f = 0.61, 〈�Vt( �R1)〉op1
f = −0.11,

〈∑2
i=1

∑N
k=1 �Vint( �Ri − �rk)〉op1

f = 0.79. Also, we find that 〈Q1〉op1
f is sufficiently small to be

ignored (within the numerical accuracy of our simulations). Using these values, we estimate

F thermo
2 = −5.2. (35)

Next, by exchanging the roles of particles 1 and 2 (see figure 2(b)), we can define F thermo
1

in the same way:

−F thermo
1 �R1 = 〈Q2〉op2

f +
〈
Q̃b

〉op2

f
+

〈
�Vt( �R2)

〉op2

f

+
〈

2∑
i=1

N∑
k=1

�Vint( �Ri − �rk)

〉op2

f

+ O(�R2
1). (36)

In figures 5 and 6, we plot 〈�Vt〉op2
f and 〈∑2

i=1

∑N
k=1 �Vint( �Ri − �rk)〉op2

f as functions of

�R1 for the case of f = 0.3. Also, in figure 4, 〈Jb(t)〉op2
f is plotted as a function of time

for the case of �R1 = 0.25. Then, obtaining 〈Q̃b〉op2
f = 0.64, 〈�Vt( �R1)〉op2

f = −0.05,

〈∑2
i=1

∑N
k=1 �Vint( �Ri − �rk)〉op2

f = 0.79, and ignoring the small contribution from 〈Q2〉op2
f ,

we estimate

F thermo
2 = 5.5. (37)
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Figure 5. 〈�Vt〉op1
f as a function of �R2, and 〈�Vt〉op2

f as a function of �R1. The open symbols
and the solid symbols represent the quantities obtained in the situations described in figures 2(a)
and (b), respectively.
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Figure 6. 〈∑2
i=1

∑N
k=1 �Vint( �Ri − �rk )〉op1

f as a function of �R2, and 〈∑2
i=1

∑N
k=1 �Vint( �Ri −

�rk )〉op2
f as a function of �R1. The open symbols and the solid symbols represent the quantities

obtained in the situations described in figures 2(a) and (b), respectively.

The numerical results given in (35) and (37) are consistent with the law of action and reaction
with respect to F thermo

1 and F thermo
2 . While it is desirable to obtain more precise results (the

uncertainty on the values of F thermo
i is due mainly to the difficulty in determining 〈Q̃b〉op1

f and

〈Q̃b〉op2
f (see figure 4)), it is clear from the present results that even if the law of action and

reaction is violated for F thermo
i in the NESS we consider, the extent of this violation is much

less than that in the case of Fmec
i (recall that we found 〈Fmec

1 〉s
f = 7.0 while 〈Fmec

2 〉s
f = −3.6

(see figure 3)).

4.3. Statistical mechanical definition

In this subsection, we investigate the interaction force between particles 1 and 2 in a NESS
from a statistical mechanical point of view, employing the steady-state distribution function,
ps( �R1, {�rk}; �R2). It is known that ps( �R1, {�rk}; �R2) is given by

ps( �R1, {�rk}; �R2) = lim
τ→∞ pc( �R1, {�rk}; �R2) exp (−β
τ ), (38)
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with


τ =
∫ τ

0
dt

N∑
k=1

�f · �̇rk, (39)

where A denotes the statistical average of A over noise histories under the condition that
the initial condition ( �R1(0), {�rk(0)}) is fixed as the argument ( �R1, {�rk}) of the distribution
function ps( �R1, {�rk}; �R2). The expression (38) indicates that the deviation of ps( �R1, {�rk}; �R2)

from the canonical distribution, pc( �R1, {�rk}; �R2), is represented by the entropy production
β
τ . This form of the steady-state distribution is similar to that obtained by Zubarev and
McLennan [10, 11]. (Regarding the derivation for stochastic systems, see section 4.2 of [12].)

Now, referring to the equilibrium case, we define an effective potential Veff( �R1; �R2) by

exp[−β(Veff( �R1; �R2) + Vt( �R1))] = lim
τ→∞

∫ N∏
k=1

d�rk pc( �R1, {�rk}; �R2) exp(−β
τ ). (40)

With this effective potential, we define the statistical mechanical force as

�F stat
2 ≡ −∂Veff( �R1; �R2)

∂ �R2

. (41)

Then, differentiating (40) with respect to �R2, assuming that the relation

∂

∂ �R2

exp(−β
τ ) = −β

(
∂

∂ �R2


τ

)
exp(−β
τ ) (42)

holds, we derive
〈 �F stat

2

〉s

f
=

〈 �Fmec
2

〉s

f
− lim

τ→∞

∫
d �R1

N∏
k=1

d�rk ps( �R1, {�rk}; �R2)
∂

∂ �R2


τ . (43)

Note that (42) is valid to linear order in �f because the both sides of (42) become

−β
∂

∂ �R2


τ + O(| �f |2). (44)

We expect that (42) might be approximately valid even for large �f , due to many-body effects.
In the argument below we assume (42).

On the other hand, using the energy balance equation obtained from the Langevin
equations (3) and (5), we can rewrite (34) as

F thermo
2 �R2 = 〈

Fmec
2

〉s
f
�R2 − lim

τ→∞
�f ·




〈∫ τ

0
dt

N∑
k=1

�̇rk

〉op1

f

−
〈∫ τ

0
dt

N∑
k=1

�̇rk

〉s

f


 . (45)

Then, recalling that 〈 〉op1
f is the statistical average with respect to the instantaneous shift

�R2 → �R2 + � �R2 at t = 0, we can write〈∫ τ

0
dt

N∑
k=1

�̇rk

〉op1

f

−
〈∫ τ

0
dt

N∑
k=1

�̇rk

〉s

f

=
∫

d �R1

N∏
k=1

d�rk ps( �R1, {�rk}; �R2)
∂

∂ �R2

∫ τ

0
dt

N∑
k=1

�̇rk� �R2 + O(|� �R2|2). (46)

Substituting this result into (45) and comparing the obtained expression with (43), we find

F thermo
2 = 〈

F stat
2

〉s
f
. (47)
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Thus, the equality F thermo
1 = −F thermo

2 observed numerically in the last subsection suggests
that �F stat

1 defined by

�F stat
1 ≡ −∂Veff( �R2; �R1)

∂ �R1

(48)

satisfies the relation

�F stat
1 = − �F stat

2 . (49)

We further assume that

Veff( �R1; �R2) = Veff( �R2; �R1). (50)

Then, (49) and (50) imply that there exists a function Ṽeff( �R1 − �R2) such that

Ṽeff( �R1 − �R2) = Veff( �R1; �R2)

= Veff( �R2; �R1). (51)

It is for future work to develop a theoretical argument for the suggestion (49).

5. Discussion

In this paper we have studied three types of force, F stat
i , Fmec

i and F thermo
i , in a NESS. In

equilibrium, these forces satisfy the relations 〈F stat
i 〉s

f =0 = 〈Fmec
i 〉s

f =0 = F thermo
i . From the

results of our numerical simulations, we found that in the NESS that we study F thermo
1 =

−F thermo
2 but 〈Fmec

1 〉s
f 	= −〈Fmec

2 〉s
f , and hence the law of action and reaction holds for forces

of the former kind but not the latter. We also demonstrated that F thermo
i defined with respect to a

form of the first law of thermodynamics hypothesized to hold for our NESS is equal to 〈F stat
i 〉s

f
derived from the expression for the steady-state distribution under the assumption represented
by (42).

The law of action and reaction holds for any force given by the derivative of a potential
function. Thus, the fact that this law holds with respect to the thermodynamic force defined
by (34) implies that in the NESS we considered, there may exist a potential function
associated with this force. It is important to clarify the physical conditions under which the
thermodynamic force obtained using the method employed in this paper is indeed a potential
force.

In equilibrium, a potential function is related to the thermodynamic free energy. For
this reason, it is natural to conjecture that even in a NESS, the potential force measured
experimentally is related to thermodynamics. Such a conjecture led us to introduce the
thermodynamic force based on the idea of Oono and Paniconi [9]. Here we remark that
the framework proposed by Oono and Paniconi is embodied in the non-equilibrium Langevin
model [13]. In that work, Hatano and Sasa derived an identity which yields an extended second
law relating the Shannon entropy to the excess heat they defined. Recently, the validity of this
identity was confirmed experimentally for a bead system [14]. In the analysis employed in the
present paper, we conjecture that Q̃b defined in (33) has a certain connection with the excess
heat defined in [13]. However, we do not yet understand this relation, though apparently the
quantity Q̃b employed here takes a simpler form than that proposed by Hatano and Sasa.

As another important subject related to the present work, we now consider the problem of
force decomposition. As seen in section 4.1 (see figure 3), the law of action and reaction does
not hold for the total mechanical force acting on the test particle, 〈 �Fmec

i 〉s
f . If the potential force

in a NESS can be defined properly on the basis of thermodynamic considerations, it might be
possible to decompose 〈 �Fmec

i 〉s
f into its potential and non-potential parts. Furthermore, because
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�Fmec
i fluctuates in time, we would like to decompose �Fmec

i into a fluctuating dissipative force,
a fluctuating interaction potential force and the remaining part.

With regard to the decomposition of fluctuating forces, recently a significant result has
been obtained for a model of a Brownian particle that is driven by an external driving force and
subject to a spatially periodic potential. As this particle is driven in one direction, it experiences
repeated ‘collisions’ with the periodic potential barriers. Studying a finite time average of the
force exerted by the periodic potential under non-equilibrium conditions, we have found that
a simple orthogonality condition provides a proper force decomposition of the time averaged
force into a dissipative force and a non-dissipative part [15]. This result has led us to construct a
mathematical technique for re-expressing a Langevin equation in a form in which the response
function appears explicitly [16]. Using this technique, an interesting equality that connects
energy dissipation with the violation of a fluctuation-response relation has been proved [17].
Considering these developments, the problem of decomposing 〈 �Fmec

i 〉s
f can be regarded as a

natural extension of the study presented in [15], involving the elimination of the dynamical
degrees of freedom.

To summarize the most important point of this work, we have found that the law of action
and reaction with respect to thermodynamic forces has a deep connection with fundamental
aspects of non-equilibrium statistical mechanics. We believe that the numerical findings
reported in this paper will stimulate further theoretical and experimental studies.
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